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“The wide-angle time-domain parabolic equation (TDPE), which is the inverse Fourier
transform of the wide-angle parabolic equation (PE), is derived. A numerical solution for the
model is described and a benchmark calculation is presented. The narrow-angle TDPE is also
considered and its error is analyzed and compared with the error of the narrow-angle PE. The
TDPE is compared with the progressive wave equation, which is shown to be restricted to
narrow-angle propagation for practical purposes. In the sediment, aitenuation is assumed to
depend linearly on frequency and the corresponding causal dispersion law is assumed. The
model is used to show that the effect of sediment dispersion on pulse propagation in the ocean

can be significant. - -- p e . < . s

PACS numbers: 43.30.Bp. 43.30.Ma, 43.20.Bi

P A I
’ e

.
- T \(‘14""-
t .. o

INTRODUCTION

Time-domain approaches are useful for modeling
broadband acoustic propagation. For example, suppose that
a sequence of snapshots of the acoustic pressure in two spa-
tial variables is desired to study the evolution of a pulse in
time. With {requency-domain approaches to this problem, it
is necessary to: (a) Fourier decompose the source function;
(b) solve the propagation problem for each frequency; (c¢)
store and manage the solution for each frequency; and (d)
perform a three-way sum over frequency and space for each
snapshot. Errors due to approximations and round-off occur
insteps (a), (b),and (d). Step (a) requires the selection of a
frequency spacing and a frequency band. Step (b) requires
the selection of grid spacings for each frequency. Step (¢)
can be difficult for broadband problems. Even if step (b)
requires less computer time (CPU) than a time-domain cal-
culation, it is possible that step (d) will offset the advantage.
For an analogous problem,' inverting a modal decomposi-
tion required several times as much CPU as performing the
calculation for each of the modes.

In shallow water, it is essential for an underwater pulse
propagation model to handle bottom interaction. range-de-
pendence, and wide-angle propagation. Since the ocean is an
inhomogeneous waveguide of variable depth, a realistic
propagation model must handle both bottom interaction
and range dependence. Benchmark studies’ indicate that
wide-angle capability is important in underwater acoustic
modeling. The parabolic equation® (PE) method is ideally
suited to handle range dependence. With the development of
wide-angle capability,*" the PE method became the most
useful frequency-domain tool available for bottom-interact-
ing propagation. Two time-domain methods related to the
PE method have been developed. The progressive wave
equation®™ (PWE) advances the acoustic pressure in time.
The PWE has been extended to handle nonlinear propaga-
tion” and bottom interaction.* The time-domain parabolic
equation™ (TDPE) is the inverse Fourier transform of the
PE. It advances the acoustic pressure in range. More effort
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};as gone into the development of the PWE, perhaps because

it is more natural to march a solution of the wave equation in
time rather than range.

In this article, the TDPE is extended to handle wide-
angle propagation, and an energy argument is presented that
shows that the PWE is not useful for wide-angle propaga-
tion. A benchmark calculation is presented and the error of
the narrow-angle TDPE is compared with the error of the
narrow-angle PE. Sediment attenuation is assumed to de-
pend linearly on frequency, which agrees with experimental
results involving various materials and frequencies.'*"'? The
corresponding causal sediment dispersion relation,'* which
has been validated experimentally,'' is also assumed in the
sediment. A calculation is presented to demonstrate that
sediment dispersion can have a significant effect on pulse
propagation in the ocean.

I. THE FREQUENCY-DOMAIN PARABOLIC EQUATION

A time-harmonic steady state is assumed and the acous-
tic pressure p is factored as p(x,t) = P(x)exp( — iwt),
where ¢ is time, x is the Cartesian position vector, and w is the
circular frequency. The complex pressure P is assumed to
satisfy the pressure-release boundary condition £ = 0 at the
ocean surface, the outgoing radiation condition at infinity,
and the reduced wave equation'*

PVl (1/p)VP] + KPP = — 4md(x — x,). n

where the point x,, is the source location. The complex wave-
number K = k + iof3 |k | is used toaccount for sediment loss.
Absolute value is used so that energy loss occurs in the direc-
tion of propagation. The wavenun ber is k = w/c,
o= (40 log,,e) ', B is the attenuati n in decibels per
wavelength (dB/4), p is the density, and ¢ is the sound
speed. The variable density term is due to Bergmann.'®

To reduce to two spatial dimensions, we assume that
azimuthal variations are negligible. Since the ocean is a
waveguide, energy propagating from a source exhibits cylin-
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drical spreading. Thus it is often beneficial tosolve Eq. (1) in
cylindrical coordinates with z being the depth below the
ocean surface and r being the horizontal distance from a
source at the depth z,. Variations in range are assumed to be
sufficiently weak so that dp/dr can be ignored, which simpli-
fies Eq. (1) to

3P _Ldp o P 1P .up
3 p 3z 8z o r ar
= — (2/r) 8(N8(z — 20). @)

The propagation angle of a ray is defined to be the angle
it makes with the ocean surface. We define a,, to be the
maximum angle of propagation in the ocean.'® Rays that
propagate with angles greater than a,, are not trapped in the
ocean and thus do not contribute to the farfield. Since the
discontinuity in sound speed at the ocean bottom is small,
e=tan’a, <1 and k; '|k — ko| = O(e), where k, is an
average wavenumber in the water column. We define
Q = r'/?P, and Eq. (2) becomes

2
'@ 1 dp 3 3Q+Q+K2Q0 (3)

7 p ok a o’

We assume that 7> r,, where kor,> 1, and drop the O(r~?)
term in Eq. (3) to obtain
82Q 1 g 3@  3°Q
—— XX
67 p dz gz or?
We solve Eq. (4) for d2/dr? in operator notation and take
the square root to obtain the outgoing operator

+K2Q=0. (4)

a . K?—ki+L
— =ik l+——, 3
ar '“\/ T )
where
L:a_;_ia_pi. (6)
oz p 0z 9z

We consider a plane wave traveling with the vertical angle
a<Qy:

Q. = expliky(rcosa + zsin a)]. N
Since dQ,, /dz = O(€''?) and p depends weakly on depth, we
are motivated to assume that

Q=0'(z€"?), (8)

p=p'(ze'?), 9)
where Q' and p’ are independent of €. Thus &, L = 0(e)

and we may replace the square root in Eq. (5) withiits Taylor
series approximation to obtain the narrow-angle PE opera-

tor
K:—ki+L
—cah(|+—~——21—>
242

Replacing the square root with its Padé approximation, we
obtain the wide-angle PE operator

J_ . UK ~ko+ L)
— =ikl + ———7——).
ar k2 4+ K+ L
We define U by

(10)

(1
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Q(r,z) = U(rz)exp(ikyr). (12)
To simplify Eqs. (10) and (11), we assume that o3 €. For
the wide-angle operator, we also require that
ko 'lk — k,| <€ in the water. This assumption, which is val-
id in shallow water, leads to a TDPE that is easy to solve
numerically. Substituting Eq. (12) into Egs. (10) and (11},
we obtain the narrow-angle PE

au iL
=itk —ky)U—0Bky|JU+—U 13
ar o) 0B kol U + 2", (13)
and the wide-angle PE
U . 2ik, L
=itk —ky)U-- 0B |k,jU+ ———U. 14)
ar 4] ﬁ' ()1 4k(2) + L (

Since an outgoing signal is trapped in the water column, Eq.
(14) should be valid for wide-angle propagation in shallow
water.

We solve Eq. (14) with the method of alternating direc-

tions,'” which requires numerical solutxons for each of the
following:
Y itk — kU, (15)
ar
Y Bk, (16)
ar
k13U+ AU 1 3p U

dr 9rdz p 9z droz

— ik &Y g, L 2 Y an

az p 0z dz

Equations (15) and (16) can be solved exactly. We apply
Galerkin's method to reduce Eq. (17) to

au

R—+5U=0, (18)
oar

where R and S are tridiagonal matrices and U is the vector
containing the values of U at the depth grid points. This
approach is effective for handling piecewise continuous var-
iations in p and k.'" Details regarding the entries of the ma-
trices are given in the Appendix and in Ref. 8. Crank-Nicol-
son integration is used to solve Eq. (18); Eq. (13) is solved
in a similar fashion.

We demonstrate the validity of Eq. (14) and the nu-
merical method with a benchmark problem' for which data
appear in Table I. Subscripts w and b stand for water and
bottom and z, is the receiver depth. The occan depth
d = 100 m is constant. The deep source excites wide-angle
modes. Transmission loss data obtained with a normal
modes calculation and with Eqgs. (13) and (14) using a
Gaussian PE starter''" appear in Fig. 1. The results of Eq.

TABLE 1. Data for the wide-angle PE benchmark problem. CPU for cach
PE calculiation.

2, =995m z, =99.Sm ¢, = 1500 m/s
= 1500 m/s p, = lg/em' B, =0

¢, = 1590 m/s pn = 1.2g/em’ B, = 0.5dB/4

d=100m w=5007s ! Ar=1m

Az=02m Iy = 200m CPU = 4 5min

Michael D. Collins: Time-domain solution 2115
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FIG. 1. Wide-angle PE benchmark. Solid curve is (a) narrow-angle PE
result and (b) wide-angle PE result. Dashud curve is normal modes result.

(13) exhibit phase delay errors due to wide-angle propaga-
tion. The results of Eq. (14) agree well with the normal
modes result, which shows that Eq. (14) is a valid wide-
angle PE. All calculations were done on a Digital VAX-8650
computer.

. THE TIME-DOMAIN PARABOLIC EQUATION
We define u by

u(r,zt) =J . U(rzw)exp( — iot)dw, (19)

Ulrzw) = —Zl-f u(rz,t)exp(fwt)adr. (20)
' -

We define ¢, = w/k,, rewrite Eq. (13) as
9 _ ,-w(i_ L) U—
ar ¢ ¢

and invert the Fourier transform to obtain the narrow-angle
TDPE :

(L 1y, ob

GBlol gk yo
)

Cy £«

dr o c/ dt c,
Tou(t) —u(rn) ¢, L
—dt' + u. (22)
.f (' -1t 20 /01

The integral in Eq. (22) exists as the Cauchy principal value,
One can show that the integral operator in Eq. (22) is the
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inverse transform of the operator — g3 ,w\/c, by verifving it
for a single frequency. We rewrite Eq. (14) as

ég_—_[w(_l___l_) U— 9B || U+ 2’1“)"('[: U
ar ¢ Co Cy 4" + C(')L

(23)
and invert the Fourier transform to obtain the wide-angle
TDPE

du ( 1 1 ) Au

—_— =] — e} — +

o ¢, ¢/ dt

2c,(d /at)L "
4(0°/9t7) — L

As for the nonlinear PWE of Ref. 7, each of the terms on the
right side of Eq. (24) accounts for a specific physical pro-
cess; and they are referred to (from left to right) as the re-
fraction term, the attenuation term, and the wide-angle dif-
fraction/density term.

The TDPE can be initialized at » = #, by the homoge-
neous half-space field'®

_U'ﬁ * u(t’)—u(,t)—dt’
¢y . (t'=—1r)"

(24)

p,,(r,z,t):%f(t—g'—)—zl—f(t——i*—), (25)

Co + Co
d? =r’+(z+2z), (26)
where f (t) is the source function. The half-space field satis-
fies the pressure release boundary condition at the ocean
surface, and it accounts for the direct arrival and the surface-
reflected arrival without accounting for refraction, loss, or
bottom reflections. This starter is accurate because refrac-
tion and attenuation are weak and can be neglected near the
source. Furthermore, rays that reflect from the ocean bot-
tom near the source propagate at large angles. Thus they are
not trapped in the oceanic waveguice and do not affect the
farfield.

We define g(r,2,t) by ¢ = r''*p and observe that

qlrzit) = f 7 Q(rz,w)exp( — int)dw, (27)
O(rzw) = L f g(rz.texpliot)dt (28)
27 x
u(rz.t) :f Q(rz,w)exp [ — iw (r + L)] duw.
. ¢
3] (29)

From Eq. (29), we deduce that u(r.z,t) = q(r.z,t + r/c,).
Thus u has the values of ¢ in a reference frame that moves in
time and tracks an outgoing signal. In contrast, the PWE
involves v(r,z,1) = q(r 4 cyt,2,t), where v has the values of ¢
in a reference frame that moves in space.

To solve the TDPE numerically, the source function
f (1) is assumed to have compact support. A time window
t, <t <, that contains the signal at all times is chosen. This
is possible since the outgoing signal is tracked by the time
window. The boundary condition u = 0 is used at the pres-
sure release surface, deep within the sediment at z = z,,
(from which no energy returns to the water column due to
attenuation), and after the signal has passed the observer at
¢ — t,. The boundary conditicns u == du/Adr = 0 are used be-
fore the signal is detected at ¢ = ¢.
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We solve the wide-angle TDPE with the alternating di-
rections method with the splitting used to solve the wide-
angle PE:

ou ( 1)314
1 _1)ou _ 30
8r+ ¢,/ Ot G0
_al_—_gé _____u(t’)—uSl)dt,’ 3
ar e, <« (t'=1"
4 9w 3w 1 Jp Ju
ck I Grdr p 9z droz
_2 d'u 2 dp du ' (32)
c(, o dt  c,p Iz Jz ot

The Lax—Wendroff method™ is used to solve Eq. (30),
which is a first-order hyperbolic equation.

Since Eq. (16) can be solved exactly, we define the range
increment Ar and y = of8 Ar/c, and solve Eq. (31) as fol-
lows:

U(r+ Arz,w) = U(rz.o)exp( — yioi), (33)

u(r+ Arz,t)

=J U(r.zw)exp( — ylollexp( — iot)dw.  (34)

Substituting Eq. (20) into Eq. (34) and interchanging the
order of intcgration, we obtain
u(rzz )

1, 1’_ + (t - f)—
The kernel of the mtegra] operator of Eq. (35) is large near
t' = tbecauseit convergesto&(t' — t) as Ar—0. Thissingu-
lar behavior makes the operator local and thus numerically
efficient. Since the kernel goes to zero rapidly away from
t’ = t, the integration limits can be collapsed to a small inter-
val containing ¢’ = We approximate the integral over
(2,, —At/2, t, +At/2) by replacing u(r.z¢t) with
u(rzt,, ) and integrating the kernel exactly to obtain

t, —t, + gAt)
X

ot — 1, — AL
— tan =Nl ulrzt,,),
X

(36)

where the time grid points are 1, = n At and At is the time
increment.
Galerkin’s method is used to reduce Eq. (32) to
3
4 du d’u Ju

B C—=0,
8r+ arazz+ ot

where A, B, and Care tridiagonal matrices and u is the vector
containing the values of u at the depth grid points. Details
regarding the entries of these matrices are discussed in the
Appendix. Crank-Nicolson integration is used to advance
Eq. (37) in range using centered differences in ¢. Since the
energy flow due to geometric dispersion is from ¢, to ¢,, it is
necessary to sweep from ¢, to t,.

We demonstrate the validity of Eqs. (22) and (24) with
abenchmark.® We use the data from Table I1 with the Gaus-
sian source function

u(r + Arzg) =X Y dr'. (35)

u(r+ Arzt,) = 1 > [tan" '(
1T m

(37)
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TABLE I1. Data for the wide-angle TDPE benchmark problem. CPU for
wide-angle TDPF calculation.

z,=75m z,=25m ¢o = 1500 m/s
¢, = 1500 m/s p. =1g/cm’ B.=0

¢, = 1600 m/s p, = 15g/cm’ B, =0.5dB/4
d=d(r) v=150s""' ro=50m
Ar=35m Az=2m At =2/3ms
©=1007s ' 2y =300m CPU=2375h

[ =exp[ — (v)], (38)

where v = 150 s~ '. The ocean depth is 200 m for r < 4 km,
linearly sloping from 200 to 50 m over 4 km < < 8 km, and
50 m for > 8 km. To prevent reflections, a layer of sediment
100Az thick is added below z = z,, in which S increases
linearly to 10 dB/A. We have found this approach effective
and use it in all calculations. The results of Eq. (24) appear
in Fig. 2. To obtain a sequence of snapshots of the acoustic
pressure, we convert the horizontal axis from time to range
using the approximation

(39)

which is valid for small propagation angles and small or.
With this conversion, it is easier to describe the snapshots.
The solid contours correspond to p > 0; the dashed contours
correspond to p < 0.

In the water column, the field consists of a sequence of
fronts involving multiple reflections from the ocean surface
and bottom. Since the reflection coefficient at the ocean sur-
face is — 1 and the reflection coefficient at the ocean bottom
is approximately — 1 for small-angle incidence, the multi-
ply reflected arrivals alternate between solid and dashed
contours. Energy flows to the left due to geometric disper-
sion. As time increases, the fronts are squeezed together.
Large amounts of energy penetrate into the ocean bottom in
the upslope region.

The error of the narrow-angle TDPE is analogous to the
error of the narrow-angle PE as both involve delays. Distinct
features in the narrow-angle transmission loss curve in Fig. 1
appear at larger ranges than they should. For example, the
large null that occurs before r = 7 km appears well beyond
r = 7km. Itis evident from the waveforms appearing in Fig.
3 that energy is dispersed too fast and squeezing is delayed
for the narrow-angle TDPE. The errors are small for the first
arrivals. However, the agreement gets progressively worse
for the later arrivals since the propagation angle increases
with arrival time. The agreement improves as wide-angle
energy is cut off with decreasing depth.

To obtain a TDPE benchmark, we approximate a time-
harmonic source by

pur+8rz,ty=p(rzt — dr/c,),

sin((ot);-z af(r—1t") (40)

where w = 1007 s ~'. By superposition, the time-harmonic
response p,,, is approximated by

pvw(r,z.t)sz ap(rzt—1t7), (41
where p is the response to f. Details regarding the constants

Michael D. Collins: Time-domain solution 2117
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@" and 1" and the approximation of a function by Gaussians
are given in Ref. 8. Transmission loss data obtained with Eq.
(14) as well as Egs. (22) and (24) using Eq. (41) appear in
Fig. 4. Phase errors are evident for the narrow-angle TDPE
calculation. As for the waveforms in Fig. 3, the errors de-
crease as wide-angle propagation is cut off. The agreement is
good for the wide-angle TDPE calculation.

1l. COMPARISON OF THE TDPE AND THE PWE

The TDPE and the PWE are special cases of a one-
parameter family of methods for solving the wave equation.
For ¢ = p = | and # = 0, the inverse Fourier transform of
Eq. (4) is

d- g 9’
9, g O 42)
oz dr- Jt
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FIG. 2. Snapshots of the pressure field obtained with wide-angle TDPE
near (a) r=2km, (b) r=4km, (¢) r=06km, (d) r=8 km, and (e)
r =10 km. Horizontal line is the ocean bottom (gradual slope is not
shown).

In the derivation of the TDPE. we defined a new dependent
variable. In the following analysis, it is convenient to define
new independent variables. We introduce & = (f — r)/2,
7 =rcosd + ¢sin 4, and ¢ = z. which transform Eq. (42)
into

3 . -

(‘ q — (cos @ + sin &) ¢ q

ag- ey
(9:q

+ (cos” & — sin” @) = 0. (43)

ay’

We require that ¢ vanish at & = &, &
that dg/J  vanishat & = 50 Aty

= e and = J) and

3w we upose the imtial

condition ¢~ ¢, The geometry is illustrated in Fig. S
Since the outgoing field is tracked. and o propagates
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with small vertical angles, the dominant operator in Eq.
(43) is 3 /J&. Thus we assume that d /dn <d /3¢ <J /d& and
drop the third term to obtain

2 2

a‘{—(cos:ﬁ-{»sina}) 9g =0. (44)

a- 9 an
The narrow-angle TDPE corresponds to ¢ = 0 in Eq. (44).
The narrow-angle PWE corresponds to ¢ = 7/2. Thus the
narrow-angle TDPE and the narrow-angle PWE have the
same canonical form.

Differentiating Eq. (43) with respect to £ and Eq. (44)
with respect to 7, we obtain
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FIG. 3. Waveform detected by received at z = 2S5 mand (a) r = 2km, (b)
r=4km (¢)r—6km, (d) r=8km.and (e} r = 10 km. Solid curve is
wide-angle TL PE result. Dashed curve is narrow-angle TDPE result.

d’q . a'q
— (cos & + sin @) —
FYETE (cos in 9% on
s ., d'q
+ (cos” ¢ — sin~ @) - =0, (45)
( 9t dn”
R K}
94q —(cocd)—ksinrﬁ\j q‘ C. (46)
dn ac? g Iy’

Wesolve ford ‘q/d¢ dn” in Eq. (46) and substitute the result
into Eq. (45) to obtain
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FIG. 4. Wide-angle TDPE benchmark. Solid curve is (a) narrow-angle
TDPE result and (b) wide-angle TDPE result. Dashed curve is wide-angle
PE result.

(7:93?’ ~ (cos 6 +sin é) (9"8;277
d’q
+ (cosd — ¢ =0. 47
sin @) FMETE (47)

As the sign of the third term changes at ¢ = 7 /4, the canoni-
cal form of Eq. (47) changes.

The wide-angle TDPE is obtained by taking ¢ =0 in
Eq. (47)

t

FIG. 5. Geometry of coordinate systems. Signal propagates within the diag-
onal strip.
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d'q  d'q d'q
gEGET FErTIn  dnac?
We investigate the stability of Eq. (48) with the energy
method.”' Due to the boundary conditions at & = £, Eq.
(48) is equivalent to

_(9_q= ;alqd£’+J§ o axq
a  J., I T o Je, ING*

We multiply Eq. (49) by ¢ and integrate over £ using inte-
gration by parts to obtain

0. (48)

(49)

de " de .

() ae a + ]

51} as @
- _2f J %gdg (50)

We define the energy E by

E(&m) = f Hf ( )dzf de’ +q}d§.(51)

Since JE /dn < 0 by Eq. (50), we deduce that the wide-angle
TDPE is well-posed. A similar argument holds for ¢ < 7/4.
Thus Eq. (47) is well-posed for ¢ < 7/4.

The wide-angle PWE is obtained by taking é = #/2 in
Eq. (47)

dq diq dq

8§8§3—a§231,_a,,a§:=°' (52)
f f ( )d°"d§ —q]dg
—sz (5 )d“d“ (53)

'We define the energy E = \Fl where

F(ém) = f U f ( )dg" d_é"-q:]d;. (54)

If F> 0 initially, dE /dp >0 by Eq. (53). Thus the wide-
angle PWE is ill-posed as is Eq. (47) for ¢ > 7/4.

To understand why the wide-angle PWE is ill-posed, we
replace the initial data at & = £, with the boundary data
g=0at £ = ¢,and &,. We multiply Eq. (52) by ¢ and inte-
grate over both { and & using integration by parts to obtain

3‘;_ f f [(‘;—z) + (j_g)z] dE dt =0,

Thus the wide-angle PWE is conservative and well-posed as
a two-point boundary value problem for ¢ > /4. With these
boundary conditions, the PWE counterpart of Eq. (32) can-
not be solved by sweeping in t making it impractical for nu-
merical calculations.

We now illustrate a problem associated with the fact
that the PWE is an tnitial value problem in time as opposed
to range. The maximum range at which p, may be applied
decreases as the source gets closer to the bottom.'® Thus p,,
cannot be used to initialize the field over a wide-range win-
dow for a deep source. We modify the problem described in
Table II by moving the source down to z = 180 m and using
the half-space field

P,(rz) = (1/d Yexp(ikyd ) — (1/d, Yexp(ikd,)
(56)

(55)
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as an initial condition at » = r,. Transmission loss obtained
with Eq. (14) appears in Fig. 6 for , = 50 and 250 m and for
a Gaussian PE starter. The error for the case r, = 250 m
shows that P, is not valid to 250 m. Based on the waveforms
in Fig. Z, which are approximately 250 m in width, a window
of this width is reasonable. Thus it would be difficult to con-
struct an initial field for the PWE for this problem. Since the
agreement is good for r, = 50 m, the TDPE can handle this
problem using p, as an initial condition at r, = 50 m.

(V. DISPERSIVE SEDIMENTS

Dispersion and attenuation are introduced into the
TDPE as a perturbation with the definition K = k + b,
where b<k is a complex function of w. To obtain a TDPE
with attenuation and dispersion, the expression K = k + bis
substituted into Eq. (23) and the Fourier transform is in-
verted. This approach allows an arbitrary complex disper-
sion relation.

Experimental studies involving various materials and
frequencies have determined that Im (&) depends linearly on
w (Refs. 10-12). Ina theoretical study,'* Futterman showed
that Re(b) is determined unambiguously from Im(b) by the
principle of causality and that the following relation between
phase velocity ¢, and frequency holds:

L1208, 'i : (s
¢, ¢ m w,
40
)

TRANSMISSION LOSS(dB)

70 ’ /\\ o
80 T T T T
[ 2 4 8 8 10
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FIG 6 Wide-angle PE results for deep source. Solid curse obtamed with 2,
atfarr, 20wand b, SOm. Dashed curse obtamed with Gaussian
PE wtarter
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where w, is a very low reference frequency and ¢, (w,) = .
Wuenschel showed that the agreement between prediciion
and observation is excellent if both Re(b) and Im(b) are
imposed and that the agreement is poor if only Im(b) is
imposed.'' The effect of sediment dispersion on nearfield
acoustic propagation in the ocean has been studied experi-
mentally,* and distortions attributed to sediment dispersion
were observed in signals received in the sediment. In this
article, we are interested in the farfield effects of sediment
dispersion on signals received in the water column.

Adding the dispersive term from Eq. (57) to Eq. (23),
we obtain

au iw(l ——i)U— of3 |w) U_ 2iofw
)

ar c ¢ <y 7C,
x log || v+ Zeck (58)
W, 40° + ¢, L

Inverting the Fourier transform in Eq. (58), we obtain the
wide-angle TDPE with dispersion:

(L LYy, 2O/L
ar ¢ ¢/ ot 4(3%/3t%) —ciL
(59)
_UBJ J u(r)(|w|+—l )
2me, o,
Xexpliw(t' — 1) ]dt’ dw, (60)

where M is the attenuation/dispersion operator. The equa-
tion

e Mu (61)
is solved numericaliy with an approach suiilar to the ap-
proach uscd to solve Eq. (31). For a single frequeucy. Ey.
(61) has the exact solution

U(r+ Arz,w)

L ) (62)

2iyw
- (OR

log

= U(r.z.(u)exp( —xlow| —

where y = 08Ar/¢,. Thesolution of Eq. (61) is obtained by
inverting the Fourier transform in Eq. (62) and substituting
Eq. (20) for U to obtain

—I—J f u(rz,t'yexp( — yo)
T Jo ¥

5
> COS [(u(l’ O l(g( )] dt' do.
W,

7

(63)
The integral i~ Eq. (35) is approximated by dividing the
time integral into a sum of integrals over small intervals over
which u is assumed constant. This approach does not give a
robust numerical solution of Eq. (63). Since Eq. (63) ac-
counts for both dispersion and attenuation. it must translate
and dampen a waveform. Assuming u constant over each
subinterval of time amounts to assuming that « is a step
tuaciion in time. Thus one might capect this approach to be
incflective because the values at the grid points do aot

u(r+ Arzi1) =

change as a step function propagates a small distance. A
robust sotution is obtained by approximating « by a parabola
over cach subinterval
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For 1, —At/2<«t' <t
u(rzt') with

+ At/2, we approximate

m

u(rzt, ) —ulrzt, )
2 At

u(rz.t'y=u(rzt,) +

X' =1t,)

u{rzt, ) ~—2u(rzt,) +ulrzt, )
2(An?

X (1 —1t,)". (64)

Substituting Eq. (64) in Eq. (63), we obtain the approxi-
mate solution

u(r+ Arz.i)

=Y {Ft, — 1) ulrze,)

o

u(rzda,, ) —ulrzat, )
+G, —1,) : '
2A¢
+ H(t,, —1.)
§ u(rzit, ) — Zu(r.z.r,:,) +u(rzt, ) ] (65)
2(Arn)-
where
F(n) = 2 1 expl — yew)sin (—1— m AI)
T Ju (0 2
2y 12
X cos(mt — X wlog ——) dw, (66)
s ),

Gy = if —l—exp( - 1’(:))[Arcos (l- © AI)
mJo 2

paY] ‘
_2 sin (% w Ar )]sin ((ut _ =, log i) dw.,

1590
L ]
g 15701 o
— ///(
z —
o
=3
= 1550
> ,

1530 — ,

0 100 200 300

FREQUENCY(Hz)

FI1G. 7. Solid curve is phase velooity. Dashed curve s group velocity The
difference between the curves is nearly constant.

u(r, + Arz.1)

Y 3
=exp( — yw,)sin (w,l — ia).lOg iL)

T [on

+ 3exp( — yw.)sin (wzl 2 - log L) A(7h
7 Wy

We let ¢ = 1520 m/s. ¢, = 1500 m/s. =05 dB/4,
W, =27 s '.Ar =2 m, and Ar = 1/3 ms. The phase and
group velocities appear in Fig. 7. It is easy to show from Eq.
(57) that the difference between the phase and group veloc-
ities is nearly constant over a wide frequency band. The con-
stants 4, appear in Table I1I for {m|<20. In contrast to the
constants for the attenuation operator, A4, is negligible for
m > 1 due to the causality of the attenuation/dispersion op-
erator. We take m, = — 20 and m., = 1. The results of Eq.

@ T W, (69) appear in Fig. 8 after 100 and 200 range steps. The
(67) solution in the absence of dispersion is included for empha-
1 {71 (Ar)? . 1
H() =— —exp( — yw) sin | — e« At TABLE I11. Coeflicients for the numerical solution of the attenuation/dis-
TJ @ 2 2
persion operator. The small numbers in the right column are not used in the
2A7 1 calculations.
+~-cos(2wAt) -
3} m A, m A,
4 1 2 ©
— — sin (- w A )] cos (wt ~ X vlog?) do. - 20 5.5357370E-05 1 2.0431539E-09
@ 2 ™ W -19 6.3951957E-05 3 3.0856633E-09
(68) - 18 7.1207804E-05 4 4.1212398E-09
i ) o —17 7.9770936E-05 5 5.1469717E-09
By manipulating the indices, Eq. (65) becomes - 16 8.9975285E-05 6 6.1596332E-09
. -15 1.0226850E-04 7 7.1556476E-09
u(r+ Arzt,) = A u(razt , 69 —14 1.1726187E-04 8 B.I1310549E-09
( o) ,,,Zml PPl s n) (6%) -3 1.3580774E.-04 9 9.0814698E-09
R . . -12 1.5912310E-04 10 1.0002032E-08
where the coefficients 4,,, are easily solved for in terms of F, _ 1 * 8899402E-04 1 1.0887371E-08
G.and H. Since the operator convergestod(t’ — 1) as Ar—0, - 10 2.2812726E-04 12 1.1731533E-08
the sum can be collapsed to a small number of grid points -9 2.8078392E-04 13 1.2527930E-08
near ¢, making the operator efficient. The integrals for F, G, B 5 2:;22;25& }‘; :'iiigi:’:gzgg
and H must be evaluated numerically, but this is a relatively 6 6.2 1603IR6E-04 16 1 4553552E-0R
minor task. -5 8.856759SE-04 17 1.50776285-08
To demonstrate the robustness of Eq. (69), we allow it - ‘3‘ ;i:g’:;gi‘ég: }g :2;?22;:;22
to act on a plane wave with the initial condition 5 4 5252889F.03 2 | $370508E.08
u(rez,t) = sin(w,t) + 3 sin(w,t), (70) -1 — 3.9909109E-02
' ‘ 0 0.9272352
wherew, = 1007s 'andw, = 3407s " '. The exact solution 1 9.9426970E-02
is given by
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FIG. 8 Benchmark of attenuation/dispersion numencal solution. Solid
curve is the numencal solution. Dashed curve s the exact sotution. Dotted
curve is the exact solution without dispersion term Re(d). after (a) 100
range steps and (h) 200 range steps.
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FIG. 9. Snapshots of the pressure field obtained with wide-angle TDPE with dispersion near (a) r
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2123 J Acoust Soc. Am . Vol 84 No 6 December 1988

TABLE IV. Data for the dispersion problem. CPU for TDPE calculation

z,=28m z,=28m ¢, = 1500 m/s
¢, = 1500 m/s p. = 1g/em’ B, =0

cp = Cpl@2) po = 1.5g/em’ B, = 0.5dB/A
d=30m v=300s ! r,=20m
Ar=2m Az=1m Ar=1/3ms
w, =2rs ' zy =100m CPU =39h

sis. We observe that the shape of the dispersed wave is dis-
torted. The agreement between the exact and numerical so-
lutions is good.

To demonstrate the effect of sediment dispersion on
pulses, we consider the problem described in Table I1V. The
base sound speed is ¢(z) = (1520 + 5z) m/sforz —d < 10
m,c(z) = 1570m/sforz —d> 10m withw, =27s ' Itis
evident from Fig. 7 that the phase velocity ¢, is about 40 m/s
greatei than ¢ in a wide frequency band centered about 100
Hz. For comparison, we consider the case with the frequen-
cy-independent sediment sound speed c(z) + 40 m/s, a
sound-speed profile that was assumed in an experimental
study.”* The source is Gaussian with v = 300s ~'. Contour
plots for the solution of Egs. (24) and (59) appear in Fig. 9.
We see from the waveforms in Fig. 10, which is qualitatively
similar to Fig. 3 of Wuenschel’s paper, that the signal is sig-
nificantly affected by the dispersion.

It was noted in Ref. 23 that the linear loss law without
disperison does not provide good predictions for an environ-
ment similar to the one we have just considered, and the
linear loss law was challenged. The results in Ref. 23 are

(c) (11
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FIG. 10. Waveform detected by receiver at z = 28 mand (a) r = 2 km and
(b) r=4 km. Solid curve is from wide-angle TDPE with dispersion.
Dashed curve ts from wide-angle TDPE without dispersion.

based on an analysis that neglects sediment dispersion.
Based on the results of Wuenschel and the fact that sediment
dispersion affects water-borne signals significantly as we
have demonstrated, it appears that dispersion might be a
better explanation of the observations than 1 new loss law.

V.CONCLUSIONS

Being the inverse Fourier transform of the PE, the wide-
angle TDPE is analytically equivalent to the wide-angle PE.
Like the wide-angle PE, the wide-angle TDPE is accurate
and efficient and easily handles range-dependent propaga-
tion. Since the TDPE is an initial value problem in range, it is
easy to construct an accurate initial field for the TDPE. The
TDPE handles sediment dispersion, which can have a signif-
icant effect on water-borne signals. The TDPE can be initia-
lized with the homogenous half-space field, which is accu-
rate and easy to construct. The numerical solution of the
wide-angle TDPE involves the method of aliernating direc-
tions as well as several other standard numerical methods.
The refraction operator is solved with the Lax—Wendroff
scheme. The wide-angle diffraction/density operator is
solved with the finite element method, centered differences,
and Crank-Nicolson integration. The attenuation/disper-
sion operator is solved with quadrature to evaluate integrals.
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APPENDIX: DEPTH DISCRETIZATION WITH
GALERKIN'S METHOD

Galerkin’s method with linear test functions is applied
to discretize depth dependence. We use the approach used in
Ref. 8 with some improvements. The depth grid points are
defined tobe z;, = i/ Az, where Az is the depth increment. The
basis functions ¥, (z) vanish for |z — z,{ > Az, increase lin-
early fromOto l overz,_, <z <z, and decrease from 1to0
over z; <z<z;,,. The basis functions can be used to ap-
proximate a function by a piecewise linear function with ex-
act agreement at the grid points. To solve the wide-angle PE,
we define U, (r) = U(r,z;), ® =log(p),and O, =O(z,) to
obtain .

Utr)=Y U (n¥.(2), (A1)

@(z);z 0,¥,(2). S (A2)

Galerkin’s method is used to discretize depth dependence in
Eq. (17) by requiring that the following hold for all ;:

u U - -
o 2T
J. ( ) V] ar ara.zzv,: .
2 2
1 U oy 9 fj+'2ik(,l@£) dz=0.
p 0z Ordz ar . pdz dz

(A3)

Equation (18) is obtained by spbstituting Egs. (A1) and
(A2) into Eq. (A3). The entries of the mdtrices R and S are
determined by the following approximations obtained with
Galerkin’s method:

2 U —2U U
("){/ RN ,f N (Ad)
Jdz i (Az)-
U 4U + U
Ul, :g:rl+ s o (AS)
' 6
9 au
dz 0z
(26, ‘_Gf‘lfe: I)U1
B 2(Az)°
n (@, -6)HU, ,+(0, , —0)OU,
2(Az)° .
(A6)

The entries of the matrices A, B, and C are also derived from
the above difference formulas.
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